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We present a detailed analysis of the fluctuation-dissipation theorem (FDT) close to the glass transition in
colloidal suspensions under steady shear using mode coupling approximations. Starting point is the many-
particle Smoluchowski equation. Under shear, detailed balance is broken and the response functions in the
stationary state are smaller at long times than estimated from the equilibrium FDT. An asymptotically constant
relation connects response and fluctuations during the shear driven decay, restoring the form of the FDT with,
however, a ratio different from the equilibrium one. At short times, the equilibrium FDT holds. We follow two
independent approaches whose results are in qualitative agreement. To discuss the derived fluctuation-
dissipation ratios, we show an exact reformulation of the susceptibility which contains not the full Smolu-
chowski operator as in equilibrium, but only its well defined Hermitian part. This Hermitian part can be
interpreted as governing the dynamics in the frame comoving with the probability current. We present a simple

toy model which illustrates the FDT violation in the sheared colloidal system.
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I. INTRODUCTION

The thermal fluctuations of a system in equilibrium are
directly connected to the system’s response to a small exter-
nal force. This connection, manifested in the fluctuation-
dissipation theorem (FDT), lies at the heart of linear re-
sponse theory. The FDT in equilibrium connects the
correlator C(Z)(t) with the response function, the susceptibil-
ity th )(t) (both defined below), and reads

X)) = k—”—c (). (1)

Equation (1) states that the relaxation of a small fluctuation
is independent of the origin of this fluctuation: whether in-
duced by a small external force or developed spontaneously
by thermal fluctuations, the relaxation of the fluctuation can-
not distinguish these cases.

The most famous example for the FDT is the Einstein
relation connecting the diffusivity of a Brownian particle to
its mobility [1]. The FDT is of importance for various appli-
cations in the field of material sciences since for example
transport coefficients can be related to equilibrium quantities,
i.e., the fluctuations of the corresponding variables [2]. It was
first formulated by Nyquist in 1928 [3] as the connection
between thermal fluctuations of the charges in a conductor
(mean square voltage) and the conductivity.

In nonequilibrium systems, this connection is not valid in
general and much work is devoted to understanding the re-
lation between fluctuation and response functions. This rela-
tion is often characterized by the fluctuation-dissipation ratio
(FDR) Xi,(t) defined as

(1) 0

_ X2 . 2)

1) =
ng() kBT ot

Close to equilibrium, one recovers the FDT in Eq. (1) with
(e)(t)—l In nonequilibrium, X, (#) deviates from unity.

ThlS is related to the existence of nonvanishing probability
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currents [see Eq. (15) below]; FDRs are hence considered a
possibility to quantify the currents and to signal nonequilib-
rium [4]. The violation of the equilibrium FDT has been
studied for different systems before as we want to summarize
briefly.

The general linear response susceptibility for nonequilib-
rium states with Fokker-Planck dynamics [5] has been de-
rived by Agarwal in 1972 [6]. It will serve as exact starting
point of our analysis [see Eq. (13) below]. The susceptibility
is given in terms of microscopic quantities, which cannot
easily be identified with a measurable function in general in
contrast to the equilibrium case. For a single driven Brown-
ian particle (colloid) in a periodic potential, the FDT viola-
tion for the velocity correlation has been studied in Ref. [7].
There it was possible to compare the microscopic expres-
sions successfully to the experimental realization of the sys-
tem [8].

Colloidal dispersions at high densities exhibit slow coop-
erative dynamics and form glasses. These metastable soft
solids can be easily driven into stationary states far from
equilibrium by already modest flow rates. Spin glasses
driven by nonconservative forces were predicted to exhibit
nontrivial FDRs in mean field models [9]. It is found that at
long times the equilibrium form of the FDT [Eq. (1)] holds
with the temperature T replaced by a different value denoted
effective temperature 7,

—C(t) (3)

x(0) =
kT Ot

This corresponds to a time independent FDR }A(f(f):f(f at
long times during the final decay process, where 7 is time
rescaled by the time scale of the external driving. In detailed
computer simulations of binary Lennard-Jones mixtures by
Berthier and Barrat [10-12], this restoration of the equilib-
rium FDT was indeed observed: for long times, the FDR X;
is independent of time. Its value was also very similar for the

different investigated observables, i.e., )A(fzf( =T/ Ty is pro-
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posed to be a universal number describing the nonequilib-
rium state. 7., was found to be larger than the real tempera-
ture, which translates into an FDR smaller than unity. Further
simulations with shear also saw T.;>T [13-16], but the
variable dependence was not studied in as much detail as in
Ref. [10], and partially other definitions of T,y were used. In
Refs. [9,10,17] it is argued that T, agrees with the effective
temperature connected with the FDT violation in the corre-
sponding aging system [18,19]. This has not yet been dem-
onstrated for different temperatures. Note that the system
under shear is always ergodic and aging effects are absent.
The fluctuation-dissipation relation of aging systems using
mode coupling techniques was investigated in Ref. [20]. In
the current approach, we do not describe aging phenomena.
Recently T.; was also connected to barrier crossing rates
[21] replacing the real temperature in Kramers’ escape prob-
lem [5]. A theoretical approach for the effective temperature
under shear in the so called “shear-transformation-zone”
(STZ) model is proposed in Ref. [22]. Different techniques
(with different findings) to measure FDRs in aging colloidal
glasses were used in Refs. [23-25]. No experimental realiza-
tion of an FDT study of colloidal dispersions under shear is
known to us. An overview over the research situation (in
2003) can be found in Ref. [4].

Interesting FDRs were found in different spin models un-
der coarsening and aging [26-31] and under shear [32]. At
the critical temperature, a universal value of X =% has been
found e.g., in the n-vector model for spatial dimension
d=4.In d=3, corrections to this value can dependent on the
considered observable [33]. See Ref. [34] for an overview.
Yet, the situation for structural glasses has not been clarified.
Also, the connection between structural glasses, spin glasses,
and critical systems is unclear.

In this paper, we present the study of the violation of the
equilibrium FDT for dense colloidal suspensions under shear.
It is a comprehensive extension of our recent paper on the
same topic [35], but also provides a number of new results
and discussions. We build on the integration through tran-
sients (ITT) approach [36-39] (reviewed recently [40])
based on mode coupling theory (MCT). This approach al-
lows us to derive quantities which are directly measured in
experiments and simulations [41-43] and the properties of
specific observables can be described. We will hence be able
to study the nonequilibrium FDT for different observables as
measured in simulations, and possible differences for differ-
ent variables can be detected. In the main text, we will fol-
low the calculation as presented in Ref. [35] in detail. It leads

to a time independent FDR )A(f during the whole final relax-
ation process whose value is universal in the simplest ap-

proximation, )A(f=%. We will also derive corrections to this
value which depend on the considered observable. In Appen-
dix A, we will additionally show a different analysis of the
extra term in the FDT following more standard routes of
MCT and projection operator formalisms. It is in qualitative
agreement with the results shown in the main text and it
allows us to estimate the size of the correction terms which
are neglected in the main text and to see that they are small.

The paper is organized as follows. In Sec. II, we will
introduce the microscopic starting point and give the defini-
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tions of the different time dependent correlation and response
functions. In Sec. III, we will introduce the different contri-
butions to the nonequilibrium term A,(#) in the susceptibil-
ity. These different contributions are approximated in Sec.
IV. The approximations for the time dependent correlation
functions will be shown in Sec. V. In Sec. VI, we will present
the final extended FDT connecting the susceptibility to mea-
surable correlation functions and discuss the FDR as func-
tion of different parameters. In Sec. VII, we show an exact
form of the susceptibility which involves the Hermitian part
of the Smoluchowski operator and the restoration of the
equilibrium FDT in the frame comoving with the probability
current. The final discussion, supported by the FDR analysis
in a simple toy model will finally be presented in Sec. VIII.
In Appendix A, we derive the expressions for the suscepti-
bility in an approach based on the Zwanzig-Mori projection
operator formalism.

II. MICROSCOPIC STARTING POINT

We consider a system of N spherical Brownian particles
of diameter d, dispersed in a solvent. The system has volume
V. The particles have bare diffusion constants D,. The inter-
particle force acting on particle i(i=1...N) at position r; is
given by F;=—d/r;U({r;}), where U is the total potential
energy. We neglect hydrodynamic interactions to keep the
description as simple as possible. These are also absent in the
computer simulations [10] to which we will compare our
results.

The external driving, viz. the shear, acts on the particles
via the solvent flow velocity v(r)=yyX, i.e., the flow points
in x direction and varies in y direction. ¥ is the shear rate.
The particle distribution function W(I'={r;},) obeys the
Smoluchowski equation [38,44],

W (I, 1) =QW (1),
0=0,+80=2,0.-[8,-F,—k-r,], (4)

with r=19Xy for the case of simple shear. () is called the
Smoluchowski operator (SO) and it is built up by the equi-
librium SO, Q,=%,d;-[d,—F;] of the system without shear
and the shear term 6Q=-2%,d;- k-r;. We introduced dimen-
sionless units for space, energy and time, d=kzT=Dy=1.
The formal H-theorem [5] states that the system reaches the
equilibrium distribution V¥,, i.e., Q,¥,=0, without shear.
Under shear, the system reaches the stationary distribution
¥, with QW =0. Ensemble averages in equilibrium and in
the stationary state are denoted

<...>=fdmre(r)..., (52)

(..H)P= f arv (I)..., (5b)

respectively. In the stationary state, the distribution function
is constant but the system is not in thermal equilibrium due
to the nonvanishing probability current j; [38],
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FIG. 1. Definition of the waiting time ¢,, and the correlation time
t after switch-on of the rheometer.

ii=[-0,+F+k-r]V =j¥. (6)

A. Correlation functions

Dynamical properties of the system are probed by time
dependent correlation functions. The correlation of the fluc-
tuation 8f=f—(H? of a function f({r;}) with the fluctuation
of a function g({r;}) is in the stationary state given by [38]

Cro(1) = (™" 5)D). (7)

Here, Q=3[9+ F;+r;-k"]- 9, is the adjoint SO that arose
from partial integrations. Cg,() is called the stationary cor-
relator, it is the correlation function which is mostly consid-
ered in experiments and simulations of sheared suspensions.
At this point, we would like to introduce three more corre-
lation functions which will appear in this paper. The transient
correlator Cgfb,) is observed when the external shear is
switched on at r=0 [39],

C(1) = (3f"e™"5g). (8)

It probes the dynamics in the transition from equilibrium to
steady state and is the central object of the MCT-ITT ap-
proach [37,39]. In the general case, where the correlation is
started a period ¢,, namely, the waiting time, after the rhe-
ometer was switched on, one observes the two-time cor-
relator Cfg(t,tw), see Fig. 1,

Crlt.t,) = C(0) + 7 J ds(a,e” o e og).  (9)

Equation (9) follows with the waiting-time dependent distri-
bution function [38],

1,
V() =W, + f dse™QW,, (10)

0

with partial integrations when averaging with W(I',z,,). For
t,,=0, the two-time correlator equals the transient correlator.
For long waiting times, it reaches the stationary correlator,
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Cy,(t,1,,— %) — C,(t), and Eq. (9) becomes the ITT expres-
sion for Cy,(7) [38]. Without shear finally, one observes the
equilibrium correlation,

e 1
C) = (8f e 5g). (11)

B. Response functions

The susceptibility x;, describes the linear response of the
stationary system to an external perturbation. Note that the
term “linear response” does not correspond to the shear, but
to the additional small test force ,(r) acting on the particles.
Because the system is always ergodic due to shearing, the
linear response will always exist in contrast to unsheared
glasses [45,46], where a finite force is needed to mobilize the
particles. Formally, the susceptibility xf,() describes the lin-
ear response of the stationary expectation value of g to the
external perturbation k,(r) which shifts the internal energy U
to U_f he(t)a

() 7(r) — ()P = f dt’ xe(t = t)h(t') + O(h).

(12)

To derive the microscopic form of the susceptibility, one
considers the change of the stationary distribution function
W, under the external perturbation. One finds [5,6,38]

)
Xre(1) = <E Zi - 6’iemg> : (13)

i i

If one replaces W, by ¥, and QF by Q in Eq. (13), the
equilibrium FDT in Eq. (1) follows by partial integrations,

(e)(t) <E i 360 t > (]‘*Q'eﬂc g> - _ %ng)(t).

l arl
(14)

In the considered nonequilibrium system, where detailed bal-
ance is broken and the nonzero stationary probability current
in Eq. (6) exists, the equilibrium FDT (1) is extended as we
see now. The above expression, Eq. (13), can be rewritten

(with adjoint current operator J,':!-=ﬂi+F-+I'-~ k') to

: )
Ang(l) = ng(l) + Cfg(t) o <2Jl ‘gfgk QT > '

(15)

Note that the new term in the FDT, Axy,(), in the following
called violating term, is directly proportional to the station-
ary probability current. A deviation of the fluctuation-
dissipation ratio, Eq. (2), from unity, the value close to equi-
librium, arises.

The extended FDT in Eq. (15) has been known since the
work of Agarwal [6]. We will analyze it for driven meta-
stable (glassy) states and show that the additive correction
Axi(?) [7.8,47] leads to the nontrivial constant FDR at long
times, as was found in the simulations. One can always ex-
press the FDT violation in terms of an additive as well as a
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multiplicative correction. The nontrivial statement for driven
metastable glasses is that the multiplicative correction is pos-
sible with a time independent factor at long times. Specifi-
cally, we will look at autocorrelations, g=f of functions
without explicit advection, f=f({y;,z;}), where the flow-term
in the current operator ﬁ in Eq. (15) vanishes. For variables
depending on x;, the equilibrium FDT is already violated for
low colloid densities as seen from the Einstein relation: The
mean squared displacement grows cubically in time [48]
(Taylor dispersion), while the mobility of the particle is con-
stant.

In contrast to the equilibrium distribution, \Ifeoce‘U, the
stationary distribution is not known and stationary averages
are in the ITT approach [38] calculated via [compare Eq.

(10)],
<...><7>=<...>+«yf ds(o,e..).

ITT simplifies the following analysis because averages can
now be evaluated in equilibrium, while otherwise nonequi-
librium forces would be required [49]. E.g., due to
V¥ ,=F;V,, the expression (15) vanishes in the equilibrium
average and reduces to

AXf(t)=—)'/fxds<0' eQ 2(0 +F) f QT’f>
0 c7r

(16)

Equation (16) is still exact and we will in the following
develop approximations for it. In the main text, we will fol-
low the derivation as presented in Ref. [35]. In Appendix A,
we present an alternative derivation with Zwanzig Mori pro-
jections. We will show in Appendix A 4 that the two ap-
proaches are in qualitative agreement.

III. VIOLATING TERM

We want to analyze the violating term Ay(7) in more
detail. It can be split up into terms containing the Smolu-
chowski operator instead of the unfamiliar operator ff This
can be done with the following identity for general functions

f ({l'i}) and g({l'i})I
b —g =10 g - g+ (@) ()

If we apply this identity to Eq. (16) with g:eQT’f, we get the
following three terms:

)= _Tq sy TS 0+ (1))
0

(18)

The first term in Eq. (18) contains a derivative with respect
to s and the s-integration can immediately be done. We find
that the first term in Eq. (18) (without the factor %) exactly
describes the derivative of Cy(z,t,,) with respect to f,, at
t,=0,
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- yf ds(a'xyemsQTéf*emtéf)
0

= Aoy df e o)
= (5F Qe 1 51)

J
= ;Cf(t’tw)|tw=0’ (19)

where from now on, we consider fluctuations from equilib-
rium, 8f=f—(f). The constant (f) cancels in Eq. (18). The
second equal sign in Eq. (19) follows with partial integra-
tions (recall 5QW¥,=0,, ¥, and [8Q", 5f]=0). The intriguing
connection to the waiting-time derivative follows by com-
parison of the second line of Eq. (19) with Eq. (9).

The second term in Eq. (18) describes the time derivative
of the difference between stationary and transient correlator,
compare Eq. (9) with #,,— . The last term in E(El (18) has no
physical interpretation and we denote it by Ay;”’. We hence
have

19 1_. .
Axi(0) =~ =Cilt.t)l o+ 5[CH0 - CP (0] + AxE,

(20)

where Ax\¥==t 2 f,"ds(a'xyems(ﬁff*)ew’]‘}. In the following
section, we w1ll look at the different terms more closely.

IV. APPROXIMATIONS FOR THE VIOLATING
TERM

A. Waiting-time derivative

In order to approximate the waiting-time derivative in Eq.
(19), we note its connection to time derivatives of correlation
functions,

(8801215 = V() - (5 Q1 p. (1)

The time derivative of the transient correlator C (t) is spht
into two terms, one containing the equilibrium operator Q
the other one containing the shear term SQ7. We will reason
the following: the term containing QZ is the derivative of the
short time, shear independent dynamics of the transient cor-
relator down on the plateau (compare Fig. 3), i.e., the deriva-
tive of the dynamics governed by the equilibrium SO (),.
The term containing 8Q0F, ie., the waiting-time derivative,
follows then as the time derivative with respect to the shear
governed decay from the plateau down to zero.

The equilibrium derivative QZ Sf" in the last term of Eq.
(21) decorrelates quickly as the particles loose memory of
their initial motion even without shear. In this case, the latter
term is the time derivative of the equilibrium correlator,
Cﬁe)(t). A shear flow switched on at =0 should make the
particles forget their initial motion even faster prompting us

to use the approximation ¢®'"=~e lip e -1, 0
tor Pg= Sf YO 6f)~'(5f . We then find

with projec-
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t, of
i iAo ke 51)
(8 QY1 8f) = (o QL o) ———. (22)
(of*of)
The first average on the right hand side is the time derivative
of C(“’)(t) The second average is not ‘known. Applying the

same approximation PP e’Pe ' {0 the transient
correlator, we have
t Sffe ety
(o eisn = (areron T gy

(of"of)
Combining the two equations, we find for the last term in Eq.
1)
')
@)’
This term is then assured to decay faster than without shear.

Now we can give the final formula for the waiting-time de-
rivative,

(3 Qfe 5y = C1) (24)

(1)
ity o= 00 - () S

ar, c91)’ @5)

This is our central approximation whose consequences for
the FDR will be worked out in Sec. VI. The quality of ap-
proximation (25) has recently been studied in detailed simu-
lations, and qualitative and quantitative agreement was found
for two different simulated supercooled liquids [50]. As ar-
gued above, the last term in Eq. (25) will be identified as
short time derivative of Cl(f), connected with the shear inde-
pendent decay, where the transient correlator equals the equi-
librium correlator. Consequently, - Cf(t t )|, =0 will turn out
to be the long time derivative of C{ connected with the final
shear driven decay. This captures the additional dissipation
provided by the coupling to the stationary probability current
in Eq. (15). The approximation in Eq. (25) is also reasonable
comparing it to the expected properties of the waiting-time
derivative: For long times, r—o0 and y—0 with y=0O(1),
one has c'ge)(t):o in glassy states and the waiting-time de-
rivative is equal to the time derivative of the transient cor-
relator. Varying the waiting time or the correlation time has
then the same effect on the transient correlator. It is for small
waiting times a function of y(z+1,) since (f+¢,) measures
the time since switch on [51].

B. Other terms in Eq. (18)

The second term in Eq. (18) has a physical interpretation
as well: it is the time derivative of the difference between
stationary and transient correlator, see Eq. (9),

¥ f ds{(o, e 3 Q1?18 = Cyl1) - CO(1).  (26)
0

The last term, A)(?), has yet no physical interpretation. At
t=0, it cancels with the second term. It is a demanding task
to estimate the contribution of the different terms to A x(z).
This can be done in an MCT analysis for density fluctuations
as presented in Appendix A. We want to briefly summarize
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Axq (z

FIG. 2. (Color online) The estimates for the Laplace transform
Axq(z=0) of the violating term in density susceptibilities for
q=gy. We show the coherent (incoherent) case with data points
connected (unconnected) by lines. Solid squares show the estimate
for the first term, the waiting-time derivative, solid spheres show
the sum of the two other terms. Open squares show the sum of all
three. The solid (dashed) line shows the prediction of Eq. (25) for
the waiting-time derivative for the coherent (incoherent) case; com-
pare with the solid squares and see main text. The picture is very
similar for the z direction [51].

the results for the contributions of the different terms as
found in Appendix A. For coherent, i.e., collective density
fluctuations, we have f=g@,=X,"" [52] For incoherent,
i.e., single particle fluctuations, one has f=p*=¢'9%s with r,
the position of the tagged particle. We denote all normalized
density functions with subscript q, the normalized transient
density correlator is denoted ®,(r) [37]. We find that the
violating term is zero for yr<<1 [53]. For long times,
yt=0O(1), we can estimate the different contributions in
terms of ®,(7), as is shown in Appendix A. We find

éa—c (1), 0 =~ VD, (1), (272)
—[q,(r) (0] +Ax () = AP Dy(1),  (27b)

where the functions ﬁqOC|j/| for small shear rates in glassy
states. In Fig. 2, we show the Laplace transform
L{Ax(D}(z)=[gdte ™ Ax4(1) at z=0 for the different contri-
butions to Ay, as estimated in Appendix A. We see that,
according to the estimates in Appendix A, the first term in
Eq. (18) is the dominant contribution to the violating term. It
is larger than the two other terms, which additionally par-
tially cancel each other. We will in the main text neglect the
sum of second and third term, this will give good agreement
to the data in Ref. [10]. In Fig. 2, we also show the predic-
tion of Eq. (25) for the waiting-time derivative, which is at
z=0 simply given by minus the height of the glassy plateau,
see Eq. (A17). We see that our estimate in Appendix A
agrees qualitatively and also semiquantitatively with Eq.
(25).

It appears reasonable to conclude that the waiting-time
derivative is larger than e.g., the second term (26), since it is
equal to the time derivative of the transient correlator at long
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times, whereas Eq. (26) is the difference of two very similar
functions. It is equal to the third term at =0 which lets us
expect that also A X?) is small.

V. APPROXIMATIONS FOR CORRELATION FUNCTIONS
A. ITT equations for transient correlators

The known ITT solutions for the transient correlators will
be the central input for our FDR analysis. In order to visu-
alize its time dependence, we will use the schematic F (&)
model of ITT, which has repeatedly been used to investigate
the dynamics of quiescent and sheared dispersions [37], and
which provides excellent fits to the flow curves from large
scale simulations [54]. It provides a normalized transient cor-
relator C(r)=®(r), as well as a quiescent one, representing
coherent, i.e., collective density fluctuations. The equation of
motion reads [37],

0=d()+T @(t)+jtdt'm(j/,t—t’)(f3(t') , (28a)
0

m(y,t) = [(v§ +2.418)D(t) + v5P*(1)], (28b)

1
L+ (31
with initial degguate I'. We use the much studied values
v5=2, vi=v5(\V4/v5—1) with the glass transition at =0, and
take m(0,¢) in order to calculate quiescent (y=0) correlators
[55]. Positive values of the separation parameter & corre-
spond to glassy states, negative values to liquid states.

In order to study the ¢ dependence of our results, we will
use the isotropic approximation [37] for the normalized tran-
sient density correlator. For glassy states, the final decay
from the glassy plateau of height f, is approximated as ex-
ponential,

Dy (1) = D (1) = fe <Pl (29)

where the amplitude A, is also derived within quiescent MCT
[56].

B. Two-time and stationary correlator

We will need to know the difference between stationary
and transient correlators in order to be able to study the FDR
in detail. Here we derive an approximate expression for the
two-time correlator Cg(t,1,,), which then gives the stationary
correlator for #,—oc. The detailed discussion will be pre-
sented elsewhere [50,51]. We start from the exact Eq. (9) and
use the projector o, ){(0,0,,) (0, as well as Eq. (19) to
get

o A ,emsa dC(1,t,,
C(t,1,) — CO (1) = f ds< o o) ICHL) .
0 (nya-xy> ‘%W t,=0

(30)

Equation (30) is a short version which neglects the waiting-
time dependence of the r=0 value of the un-normalized two-
time correlator. An extended version including this effect can
be formulated [50,51] but it is more involved and would
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Cltt,)

logq I't

FIG. 3. (Color online) C(z,t,,) from Eq. (30) for different wait-
ing times as indicated by the different line styles. The F (1? model
Eq. (28) is used to generate the transient correlators C) (solid
lines). We show a glassy state (e=107%) at shear rates y/I'=1078
(curves A) and 7/T'=107% (B). Curves C and D show the same
respective shear rates for a liquid state (e=—1073). The thin dashed
line shows the equilibrium correlator C' () for the glassy state. For
the liquid state, the correlators for 7/I'=1078 and =0 coincide.

change our results only marginally. Thus, we continue with
Eq. (30) where the first factor on the right hand side is the
normalized integrated shear modulus

t, afs
&(1,) =7 f 43?0 (31)
0 <O-xy0-xy>

containing as numerator the familiar stationary shear stress,
measured in “flow curves” as function of shear rate
[38,57,58]. A technical problem arises for hard spheres,
where the instantaneous shear modulus (o,,0,,) diverges
[37] giving formally ¢=0. The proper limit of increasing
steepness in the repulsion has to be addressed in the future
[50]. In the spirit of the F' (1? model [59], we approximate the
s-dependent normalized shear modulus by the transient cor-
relator [35,37],

¥

(0., a,) G,
Xy W p(g)—Z

where we account for the different plateau heights of the
respective normalized functions by setting G../f~ %; choos-
ing a quadratic dependence ®2(s) would only change the
results imperceptibly. We will abbreviate o(t,,— )=a. The
second factor on the right of Eq. (30) is the waiting-time
derivative, which we approximated in Eq. (25). We are hence
able to show the two-time correlator for different waiting
times for a glassy and a liquid state (Fig. 3). The short time
decay down onto the plateau f is independent of waiting time
t,,» whereas the long time decay becomes slightly faster with
increasing waiting time. Overall the waiting-time depen-
dence is small.

In recent simulations of density fluctuations of soft
spheres [42], the difference between the two correlators
was found to be largest at intermediate times, and
Ci(t,1,) = C%’)(t) was observed. Both properties are fulfilled
by Eq. (30). Note that Eq. (30) is exact in first order in ¢,
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Based on Fig. 3 and the knowledge about the transient
correlators [37,39], the short time decay of C(z,1,,) is inde-
pendent of shearing for small shear rates. In glassy states at
v— 0 with yt=const., the transient correlator reaches a scal-

ing function é’%’)('j/t) [37], and the two-time correlator from
Eq. (30) reaches Cy(#1, 1,,).

VI. FINAL RESULTS FOR THE FDR

Our final result for the susceptibility in terms of the
waiting-time derivative reads,

d 19
(1) = — —Cit) + -—CHt,1,)|; —0o- 33
Xi(?) a1 W(t) + 201, o )|zw 0 (33)

Equation (33) states the connection of two very different
physical mechanisms: the violation of the equilibrium FDT
and the waiting-time dependence of the two-time correlator
at t,,=0. The connection can be tested in simulations, where
both quantities are accessible independently [10,42]. The ex-
tra term in the FDT can indeed be connected to the time
derivative of a correlation function reflecting its dissipative
character, but no such simple relation occurs as in equilib-
rium. Using our approximation in Eq. (25) for the waiting-
time derivative, we can hence finally write our extended
FDT

')

69m> (34

. 1/( . .
mmz—qm+5@?m—d%n
This equation connects the susceptibility to measurable
quantities, at least in simulations, without adjustable param-
eter.

A. FDR as function of time

The relation between susceptibility and correlators re-
quires correlators as input. We want to visualize the suscep-
tibility using the schematic model Eq. (28), Eq. (30) for the
stationary correlator and Eq. (34). Figure 4 shows the result-
ing y together with C for a glassy state at different shear
rates. For short times, the equilibrium FDT is valid, while for
long times the susceptibility is smaller than expected from
the equilibrium FDT. This deviation is qualitatively similar
for the different shear rates. For the smallest shear rate, we
also plot y calculated by Eq. (34) with ng) replaced by Cp,
see inset of Fig. 4. In this approximation, the FDR intrigu-
ingly takes the universal value )A((““iv)(j/t):%, without any
free parameters. The realistic susceptibility is achieved by
including the difference between C)(r) and C(r). The param-
eter ¢ is directly proportional to this difference.

In the parametric plot (Fig. 5), the X =% approximation
leads to two perfect lines with slopes —1 and —% connected
by a sharp kink at the nonergodicity parameter f. For the
realistic curves, this kink is smoothed out, but the long time
part is still well described by a straight line, i.e., the FDR is
still almost constant during the final relaxation process. We

predict a nontrivial time-independent FDR X(#f)=const. if
c§’> [and with Eq. (30) also C¢] decays exponentially for long
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log4gT't

FIG. 4. (Color online) C(¢) from the F(IZ) model with Eq. (30)
and x(7) via Eq. (34) for a glassy state (¢=107%) and y/T'=10"2"
with n=1...4. Shown are integrated correlation, 1-C(r) and
response x'(f)=[hx(¢')dt'. Inset shows additionally the transient
correlator @ for comparison and the )A((“niv)zé susceptibility for
7/T'=1078. From Ref. [35].

times, because Ay; then decays exponentially with the same
exponent. The slope of the long time line becomes smaller
with increasing & [i.e., also with increasing value of G../f in
Eq. (32)]. We find that the value of the long time FDR is
always smaller than % in glassy states.

The line cuts the FDT line below f for y— 0. All these
findings are in excellent agreement with the data in Ref. [10].
The FDR itself is of interest also, as function of time (inset
of Fig. 5). A rather sharp transition from 1 to % is observed
when ® = C is approximated, which already takes place at
Y= 1073, a time when the FDT violation is still invisible in
Fig. 4. For the realistic curves, this transition happens two
decades later. Strikingly, the huge difference is not apparent
in the parametric plot, which we consider a serious drawback
of this representation.

Figure 6 shows C(7) and x(¢) for a fluid state. For large
shear rates, these curves are similar to the glassy case, while
for y—0, the equilibrium FDT holds for all times. In the
parametric plot (inset of Fig. 6) one sees that the long time

- X=1/2,y/T=10% —-
‘ y/r=10% — |
y/T=102 -~

0.8

=07

0.6

FIG. 5. (Color online) Parametric plot of correlation C(z) versus
response x'(1)=[ox(t')dt’ from Fig. 4 (e=10"3) together with con-
stant nontrivial FDR (straight lines) at long times. The vertical solid
line marks the plateau f. Inset shows the FDR X(z) as function of
strain for the same susceptibilities. From Ref. [35].
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logipT't

FIG. 6. (Color online) C(z) and x() via Eq. (34) for a fluid state
(e=—1073%) and $/T'=10"2" with n=1...4. Shown are integrated
correlation, 1—C(#) and response ' (1)=[(x(t')dt’. Inset shows the
parametric plot for the different shear rates.

FDR is still approximately constant in time for the case
¥~ 7! (n=3 in Fig. 6), where shear relaxation and structural
relaxation compete. 7 is the « relaxation time of the un-
sheared fluid.

Summarizing, we find that the two separated relaxation
steps [37,60] (Fig. 3) of the correlator in the limit of small
shear rates for glassy states are connected to two different
values of the FDR. During the shear independent relaxation
onto the plateau of height %iven by the nonergodicity param-
eter f, we have C(r)=C'(1)+O(4r) [37] in Eq. (34), and
the equilibrium FDT holds. During the shear-induced final
relaxation from f; down to zero, i.e., for y—0, and r—o°
with 7y=const., the correlator without shear stays on the pla-
teau and its derivative is negligible. A nontrivial FDR fol-
lows. In the glass holds

4

~ &) <1,

. 1., -
llm Xf([)=< _Cf(t)+EC§)(t) W_O(l)’ (35)

y—0

A Jd A
=—X¢(yt) —Ci(y1).
=~ ¢
If one approximates stationary and transient correlator to be
equal [37], C?)(t)%Cf(t), we find the interesting universal

=%—1aw for long times,

1.
lim gt — ) = — —Cy(1). (36)
=0 2

The FDR, in this case, takes
limy_ o X¢(t— OO):)A((““i")(j/t)=l, independent of f. This is in
good agreement with the findings in Ref. [10], and corre-
sponds to an effective temperature of T/ 7T=2 for all ob-
servables. The initially additive correction in Eq. (15) hence
turns then into a multiplicative one, which does not depend
on rescaled time during the complete final relaxation process.
As summarized in Sec. I, many spin models yield X :% at the
critical temperature. The deviation from the value % of the
long time FDR in our approach comes from the difference
between stationary and transient correlators.

the universal value
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FIG. 7. (Color online) Long time FDR as function of shear rate
for glassy (e=107") and liquid (e=—-107") states with n=2,3,4.
X(r— ) is determined from fits to the parametric plot as shown in
Figs. 5 and 6. Inset shows the long time FDR as function of wave
vector g for coherent (solid line) and incoherent (dashed line) den-
sity fluctuations at the critical density (£=0).

B. FDR as function of shear rate

Figure 7 shows the long time FDR as a function of shear
rate for different densities above and below the glass transi-
tion. The FDR was determined via fits to the parametric plot
in the interval C(r) €[0:0.1]. In the glass X(r—) is
nonanalytic while it goes to unity in the fluid as y— 0 (com-
pare Fig. 6). We verified that the FDT-violation starts qua-
dratic in y in the fluid, as is to be expected due to symme-
tries. X(f— o) is also nonanalytic as function of & and jumps
to an finite value less than one. For all densities, the FDR
decreases with shear rate. For constant shear rate, it de-
creases with the density. This is also in agreement with the
simulations [10].

C. FDR as function of wave vector

The realistic version of the extended FDT, taking into
account the difference of transient and stationary correlator,
gives an observable dependent FDR in general. This can be
quantified by using the exponential approximation for the
long time transient correlator for glassy states [compare Eq.

(29)] [37]

C (1t — =) =~ fre. (37)
The long time FDR then follows with Egs. (34), (30), and
(25),

- lea'

N | =

Xi{t — ) = (38)

1 -ai
The inset of Fig. 7 shows the long time FDR for coherent
and incoherent density fluctuations at the critical density. We
used the isotropic long time approximations (29) and (B24)
for ay, respectively, and ca=0.1 from Eq. (32). The incoher-
ent case was most extensively studied in Ref. [10]. The FDR
in Fig. 7 is isotropic in the plane perpendicular to the shear
direction but not independent of wave vector g, contradicting

the idea of an effective temperature as proposed in Refs.
[9,10] and others.
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FIG. 8. (Color online) Comparison to simulation data for
incoherent density fluctuations in the neutral direction (wave vector
q=7.47e,) at temperature T=0.3(7,=0.435) and y=1073. Circles
and squares are the data (including units) from Fig. 11 in Ref. [10],
lines are 1-C, from Fig. 8 in Ref. [10], and the response
X‘)(t) Joxq(®' )dt calculated via Eq. (34). The dashed line shows
Xq With approximation Cy )~ Cy- Inset shows the different correla-
tors, see main text.

For g—, h,/f, (corresponding to a;) grows without
bound and the FDR in Eq. (38) becomes negative eventually.
For the parameters we used, the root is at ¢=30. For larger
values of c¢a [i.e., for larger values of G../f in Eq. (32)], the
root is at smaller values of g. According to our consider-
ations in the discussion section and the available simulation
data, a negative FDR is unphysical. For large values of ¢, the
exponential approximation for the transient correlator or our
approximation (30) for the two-time correlator might not be
justified.

D. Direct comparison to simulation data

Despite the dependence of the long time FDR on wave
vector, Eq. (34) is not in contradiction to the data in Ref.
[10], as can be seen by direct comparison to their Fig. 11. For
this, we need the quiescent as well as the transient correlator
as input. Cée) has been measured in Ref. [60], suggesting that
it can be approximated by a straight line beginning on the
plateau f, of Cq(t) In Fig. 8 we show the resultin suscep-
tibilities. There is no adjustable parameter, when CO=~ Cq is
taken. For the other curve, we calculated C (1) by inversion
of Eq. (30). We used the dimensionless number 0=0.01 as fit
parameter which was chosen such that the resulting suscep-
tibility fits best with the simulation data. The achieved agree-
ment to y from the simulations is striking. In the inset we
show the orlgmal C, from Ref. [10] together with our con-
struction of Cge and the calculated C . It appears very rea-
sonable compared with recent 51mu1at10n data on C(t,t,,)
[42] and compared with Fig. 3. The value for f, used to
construct C ¢) is also indicated in the main figure.

VII. HERMITIAN PART OF THE SMOLUCHOWSKI
OPERATOR AND COMOVING FRAME

In this section, we want to understand the violation of the
FDT from a different point of view, i.e., from exact reformu-
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lations of the starting point [Eq. (13)]. First, we split the SO
into Hermitian and anti-Hermitian part to see how the Her-
mitian part is connected to the susceptibility in Eq. (13). We
will then see that one can reformulate Eq. (13) in terms of an
advected derivative.

A. Hermitian part

Investigating the stationary correlator in Eq. (7), one finds
that the operator Q' is not Hermitian in the average with W,
[61]. This is why one cannot show that C¢(z) is of positive
type [62] via, e.g., an expansion in eigenfunctions since only
an expansion into a biorthogonal set is possible [5,38].

Subsequent to realizing this, we want to split the SO into
its Hermitian and its anti—-Hermitian part with respect to the
average with W_. Recall that () is the adjoint of Q' in the
unweighted scalar product [5,38,44]. The adjoint of Q' in the
stationary average is defined by

(01 = f drv(D)g(MQ'f ()

= f dT¥ (D)) Qg(I) = (F Qi)
(39)
We already stressed that O is neither identical to Q nor QF,

ﬁ+=23l-2+2(ailn‘l’3)'0i—Fi'0i—3i'K'ri. (40)

The difference between nonequilibrium forces @; In ¥, and
the potential forces F;=d; In W, appears [49]. Now the Her-
mitian and the anti-Hermitian parts of Q with respect to
stationary averaging are given by

1 ~
QL:E(QT+QT)=E 81'2"'((9[ In \I}x)'ai’ (413')

1 ~
Q‘X=E(QT—QT)=E —(0iln‘I’S)'0i+Fi'0i+0i'K-l‘i.

(41b)

We obviously have Q'=Ql+Q}. QF is similar to the equi-
librium SO QZ with forces F; replaced by the nonequilibrium
forces @; In W,. As expected, the anti-Hermitian part contains
the shear part 8Q'. It also contains the difference between
equilibrium and nonequilibrium forces. The eigenvalues of
QX are imaginary and the eigenvalues of Q}, are real [5]. In
the given case, (), can furthermore be shown to have nega-
tive semidefinite spectrum as does the equilibrium operator
because we have

: (€7}
Q) =~ <‘;—J: : j—f> : (42)

If the correlation function is real for all times, C(r)=Cj(1),
as can be shown, e.g., for density fluctuations [39], the initial
decay rate is negative since Qz does not contribute,
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()
RUFQN P} = (N =~ <£ : a—f> L (43)
Jor; Jr;
Thus a real correlator initially always decays, i.e., the exter-
nal shear cannot enhance the fluctuations. Higher order terms
in ¢ contain contributions of 0} and such an argument is not
possible.

B. Susceptibility and comoving frame

We now come to the connection of (), to the susceptibil-
ity. Equation (13) can be written

. T .
Xie =~ (P Qe )9, (44)

The response of the system is not given by the time deriva-
tive with respect to the full dynamics but by the time deriva-
tive with respect to the Hermitian, i.e., the “well behaved”
dynamics. It follows that we can write the susceptibility,

X =~ (F(Q7 = Q))ee)D. (45)
We note that this equation is very similar to Eq. (13) in Ref.
[63] since %(L—L*) is the anti-Hermitian part of L in Ref.
[63]. Equation (44) can be made more illustrative by realiz-
ing that Q; can be expressed by the probability current j;,

Q=v'Xj-a. (46)

We hence finally have
Xie = <f*<<9,— v «9,»)e“*'g>”). (47)

The derivative in the brackets can be identified as the con-
vective or comoving derivative which is often used in fluid
dynamics [64]. It measures the change of the function in the
frame comoving with the probability current. If one could
measure the fluctuations in this comoving frame, these would
be connected to the corresponding susceptibility by the equi-
librium FDT. This was also found for the velocity fluctua-
tions of a single driven particle in Ref. [7]. The difference in
our system is that the probability current, i.e., the local mean
velocity, speaking with the authors of Ref. [7], does not de-
pend on spatial position x, but on the relative position of all
the particles because it originates from particle interactions.

Let us finish with interpreting the comoving frame. X;
describes the tendency of particles to move with the station-
ary current. If the stationary current vanishes, we have
X;=1. If the particle trajectories are completely constraint to
follow the current, we have X;=0, because a small external
force cannot change these trajectories and x;=0. As ex-
amples for the latter case, let us speculate about the experi-
ments in Refs. [65,66]. They consider a rather dilute suspen-
sion of colloids in a highly viscous solvent. The bare
diffusion coefficient is approximately zero (so called non-
Brownian particles), i.e., on the experimental time scale the
particles do not move at all without shear. Under shear, the
particles move with the flow and one observes diffusion in
the directions perpendicular to the shearing due to interac-
tions. A very small external force does not change the trajec-
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tories of the particles (on the time scale of the experiment)
due to the high viscosity. We expect X;=0 in this case be-
cause the particles completely follow the probability current.
The studies in Refs. [65,66] do not consider the susceptibil-
ity, the focus is put on the question whether the system is
chaotic or not. The finding that the dynamics is irreversible
under some conditions makes it even harder to predict the
FDR, which would be of great interest.

C. FDT for eigenfunctions

From Eq. (44) and QL:%(QHQ"’), we find for arbitrary
f=f({xi’yi’zi})’

X0 == 30D (01,

- SIENI (@I @)

This form is especially illustrative since it explicitly shows
that the FDT violation occurs because Q' is not Hermitian in
the stationary average. If it was, the two terms above would
be equal and the equilibrium FDT would hold. We note that
this form is equivalent to Eq. (11) in Ref. [63]. As pointed
out by Baiesi, Maes, and Wynants, Eq. (48) in the case of
simulations has the advantage that correlation functions of
well defined quantities (f and Q7f) can be evaluated. This
indicates the usefulness of Eq. (48) relative to Egs. (15) and
47).

If we consider the case that f=¢, with ¢, eigenfunction
of QF, Q'¢,=\,¢,, we find

d
Xo ()==—C,y (1). (49)
n at n
The equilibrium FDT thus holds for f=¢,.

VIII. DISCUSSION
A. Deterministic versus stochastic motion

We saw in Sec. VII that the susceptibility measures the
fluctuations of the particles in the frame comoving with the
probability current ji. We conclude that we can split the dis-
placements of the particles into two meaningful parts. First,
the stochastic motion in the frame comoving with the aver-
age probability current. Second, the motion following the
average probability current, which is deterministic and
comes from the particle interactions. The deterministic part
is not measured by the susceptibility, y is thus smaller than
expected from the equilibrium FDT. It measures only parts of
the dynamics. We have X;=1. Let us quantify the above
discussion as far as possible. In Eq. (44), we see that we can
formally split the time derivative of the stationary correlation
function into two pieces, the stochastic one, measured by the
susceptibility, and the deterministic one following the prob-
ability current:
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FIG. 9. The shear step model: the particle is trapped in wells of
width a with infinitely high potential barriers. The center-to-center
distance of the wells is denoted b.

d ) . .
G = Qe ) 4 (e ),

The inequality sté in glasses, see Fig. 7 translates into an
inequality for the two derivatives above,

Qe )P = [(FQfe g) ). (50)

In completely shear governed decay of glassy states, the de-
terministic displacements of the particles due to the probabil-
ity current are larger than the stochastic fluctuations around
this average current. In other words, if the stochastic motion
was faster than the deterministic one, the decay would not be
completely shear governed.

It is likely that with increasing density or lowering tem-
perature, the particles are more and more confined to follow
the probability current and the FDR gets smaller and smaller
and might eventually reach zero.

B. Shear step model

Trap models have repeatedly been used to study the slow
dynamics of glassy systems and to investigate the violation
of the equilibrium FDT [31,67-73]. They boldly simplify the
dynamics of supercooled liquids and glasses because the par-
ticles themselves form the traps for each other and it is there-
fore not easily possible to map the problem onto a single
particle problem. Nevertheless, we want to introduce a
simple toy model which will provide more insight into the
FDT violation of sheared colloidal glasses. The model is de-
picted in Fig. 9: the particle, surrounded by solvent (diffu-
sivity Do=kgT w,, we restore physical units), is trapped in an
infinite potential well of width a. This well mimics the cage
formed by the other particles in the real colloidal system.
The well is one in a row of infinitely many with center-to-
center distances b. At short times, the particle diffuses in the
well as do the colloids in the cages. A very long time after
we measured its position, its probability distribution P(z) is
constant within the well. In the colloidal systems, this corre-
sponds to the time-window where the correlation functions
are on the glassy plateau.

For long times, in the colloidal systems, the shear drives
the particle into a neighboring cage. For the directions per-
pendicular to the shear, this motion is symmetric (without
test force). In the shear step model, we aim at describing
such a perpendicular direction, e.g., the z direction, and a
simple mechanism to introduce the effect of shear is the fol-
lowing; at time t=0,20,30,..., the “shear steps” lift the
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particle into a neighboring well according to its current po-
sition: if it is on the left side of the well, it gets to the well on
the left hand side, if it is on the right hand side, it gets into
the well on the right hand side. The initial position of the
particle in the new well shall be distributed randomly. The
resulting dynamics indeed share many properties of colloidal
suspensions as will be shown below. Detailed balance is bro-
ken because the reverse step, that a particle is taken out of
the right side of a trap and put back into its left neighbor, is
missing.

We assume that the small force necessary to test the re-
sponse does not change the shear step mechanism, i.e., it will
only change the probability distribution of the particle in the
well and thereby make the motion asymmetric. It is appeal-
ing to imagine something similar to happen in the colloidal
system: the test force influences the distribution in the cage
and makes the probability for the particle to be driven to the
neighboring cages asymmetric.

The shear step model is much simpler than other trap
models considered in the literature. The Bouchaud trap
model [69] contains a distribution of traps of different depth,
allowing to study different situations such as aging. It was
extended to study the FDT violation for the driven case in
Ref. [73]. The simplicity of our model makes it easy to be
analyzed and the result for the FDR contains only the param-
eters a and b, whose values are of comparable size.

We regard the limit of small shear rates, it corresponds to
O>a?/D,, i.e., the time between two shear steps is much
longer than it takes the particle to relax in the well. We will
first present the mean squared displacement of the particle
and then its mobility under a small test force.

At short times, the mean squared displacement (MSD) of
the particle is the one of a free particle,

1ing<[z —z(0)]) =2Dyt. (51)

For times ®>t>a?/D,, the dynamics of the particle is
glassy, i.e., the MSD is constant on the plateau. This plateau
value can be derived from the constant probability distribu-
tion of the particle in the well, P(z)=1/a,

al2 al2 612
dz(0) dz[z-2(0)]*= rE

—al2 —al2

(=0 P)=

(52)

We notice that in accordance with the glassy dynamics of
colloidal suspensions, the plateau value is independent of D,
and temperature. Note that the initial positions are distributed
with P(z) as well. At long times, the particle performs a
random walk with step-length b and number of steps ¢/ @
[74] and the MSD approaches

<[z—z<o>]2>=b2é, >0 (53)

The long time dynamics is independent of temperature and
D, as is the long time decay of the density correlator for
sheared colloidal glasses [37,39]. The time scale is set by ©,
corresponding to the a ’shear rate’ of y=07".
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To calculate the fluctuation-dissipation ratio X, we have to
find the mobility u(¢) in response to a small test force F
acting on the particle, say to the right. As discussed above,
this test force shall not influence the jump rules of the shear
steps. At short times the particle obeys the (integrated) equi-
librium FDT (the Einstein relation),

1 1
lim—{[z - z(0)D") = lim
HOF<[ O 1—02kgT

([z=2(0)%) = pot.  (54)

{(..)F) denotes an average under the influence of the exter-
nal force. The external force changes the probability distri-
bution of the particle in the well. It is more likely to find the
particle on the right hand side of the well than on the left
hand side. The distribution Pr(z) for ® >¢>a?/D, follows
the Boltzmann distribution [44], which, in linear order of the
external force, reads,

1 Fz
-1 —al2<z<al2,

b —
Prd)=1a\ kT (55)
0 else.
The mean traveled distance is easily derived,
1
;([z—z(O)D(F )= (56)

1 al2 al2 a2
- dz(0 dzP -z(0)|= . 57
af_m z(0) . 2Pp(2)[z—z(0)] 20,7 (57)

Comparing with Eq. (52), the equilibrium FDT holds for all
times <0 as expected.

Due to the distorted probability distribution Pg(z) in Eq.
(55), the shear step at =0 will take the particle more likely
to the right. The rate R for jumps to the right minus the rate
for jumps to the left follows:

_ [§*Pp()dz = 2, pPr(2)dz _a F
J f/az/zp F(2)dz 4 kT
At every shear step, the particle travels on average the dis-

tance bR. For t> 0, the initially traveled distance in the well
is negligible and we have

R +O(F?). (58)

ab t
4kyT O’

1

7= 2N = 1> 0. (59)
The mobility of the particle is finite at long times and inde-
pendent of the diffusivity D,. The FDR X is in this situation
defined by

L2 —:0P.  (60)

19, ") _
F(?t<[z 2(0)]) —X(f)szT(%

We illustrate the results above with simulations of the de-
scribed dynamics. For the motion in the well a Brownian
dynamics scheme is used, i.e., at each time step (apart from
t=0,20,...), the particle is displaced according to a Gauss-
ian distribution, see Appendix C for details. Figure 10 shows
the simulation results together with the derived asymptotic
formulas. We see that the FDT holds for times r<<® and is
violated for 1> 0.
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FIG. 10. (Color online) Mean squared displacement without
(squares) and mean traveled distance with external force F (circles)
in the shear step model with b=a and ®=2a?/(2D,). Solid line
shows the short time asymptote of Egs. (51) and (54). Dashed line
shows the plateau value of “gz, Egs. (52) and (57). The dotted line
shows the long time asymptote from Eq. (53), dash-dotted line the
asymptote from Eq. (59).

1. Long time FDR

We see in Fig. 10 that the Einstein relation does not hold
for long times. The long time FDR X (> 0) is different from
unity and follows with Egs. (53) and (59),

1 <0,
X(0=11la
2b

2

a
0> —. 61
>0, Dy (61)

This is illustrated in Fig. 11.

2. Discussion

Let us further emphasize the similarities between the
shear step model and the sheared colloidal glass. For both,
X(r>0) is independent of temperature because the poten-
tials are infinitely high. In soft sphere glasses, this is not true
because the temperature also governs the glass transition.

The short time motion, the rattling in the cage or the well,
is FDT-like in both the colloidal system and the model. For

25 TSy —
—~ (t>)=05 =57
NGS [~
~ S 01 RN
15t e
5 [N 0
N
- . E - ?;2 0.1 0
N N
\ \\\
s o5 E
R T

0 1
4 3 2 1 0

<(z(t)-z(0))%> / &2

FIG. 11. Parametric plot of MSD versus mean traveled distance
for b=a and ®@=2a?/(2Dy). Solid line shows the short time relation
X=1. Dashed line shows the long time FDR X =%. Inset shows the
same graph zoomed into the short time part.
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FIG. 12. Long time FDR in the shear step model as function of
’shear rate’ 1/0.

long times, both systems show a finite response proportional
to shear rate which does not obey the equilibrium FDT.

In the shear step model, X(#> ) reaches % if b goes to a.
b<a (leading to 1 >X> %) is physically not reasonable and
we get the constraint of X S% which coincides with the one
for the real system, see Fig. 7.

The model allows to discuss two more effects: In the col-
loidal system at increasing density, the cages become smaller
and smaller. This corresponds to a decreasing value of 7, and
X(r> ) decreases. This is in accordance with Fig. 7 and
Ref. [10]. In the shear step model, it eventually reaches zero
being always positive.

For increasing shear rates, i.e., decreasing 0, the particle
has less time to relax in the well and the effect of the external
force decreases. Figure 12 shows that decreasing ® lowers
the value of X. It is also in agreement with Fig. 7 and the
simulations in Ref. [10]. We believe that the decrease in the
colloidal system has the same origin, i.e., the particle has less
time to adjust its distribution in the cage in response to the
force.

The FDT for the driven system has been studied in
Bouchaud’s trap model previously [73], where in contrast to
our model, the parametric plot has continuously varying
slope and the long time value of the FDR approaches zero in
many cases. The model in Ref. [73] is more realistic than
ours and different observables can be studied. The advantage
of the shear step model is its simplicity and its time indepen-
dent finite long time FDR which has only the physically
illustrative free parameters a and b.

IX. SUMMARY

We investigated the relation between susceptibility and
correlation functions for colloidal suspensions at the glass
transition. While the equilibrium FDT holds at short times, a
time-independent positive FDR smaller than unity is ob-
tained at long times during the shear driven decay. We find
that the long time FDR is nearly isotropic in the plane per-
pendicular to the shear flow and takes the universal value
)?(j/t):% in glasses at small shear rates in the simplest ap-

proximation. This agrees with the interpretation of an effec-
tive temperature. Nevertheless, corrections arise from the
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difference of the stationary to the transient correlator and
depend on the considered observable. They alter X; to values

)A(fS% in the glass. Our findings are in good agreement with
the simulations in Ref. [10].

While we used as central approximation the novel relation
for the waiting-time derivative, Eq. (25), a more standard
MCT and projection operator approach leads to qualitatively
equivalent results; see Appendix A. Considering the crude-
ness of the MCT decoupling and of our approximation (25),
the quantitative differences between the two approaches ap-
pear reasonable. From both approaches we can conclude that

there is a nontrivial FDR )A(f(j/t):f(f for small shear rates
during the final shear driven decay.

)A(f depends on shear rate nonanalytically for all shear-
melted glassy states. At the glass transition, the y— 0 value
jumps  discontinuously  from its nontrivial  value

}A(f(j/—> 0) <1 to the equilibrium value X;=1. For finite drive,
X; decreases below unity for all states. The discontinuous

behavior of X(7— 0) results from the shear driven decay on
time scale ~!. Within MCT-ITT the shear governed final
decay is also the origin of a finite dynamic yield stress which
also jumps discontinuously to its equilibrium value at the
glass transition. These predictions differ from the mean-field
spin-glass results. Ref. [10] finds power-law-fluid behavior
but no dynamic yield stress. Moreover, the FDR at vanishing
shear rate moves continuously to the equilibrium value unity
at the glass transition. The MCT-ITT scenario for yielding
and fluctuation-dissipation relations is thus unique compared
to other approaches to shear-melted glasses. Investigation of
shear driven glassy dispersions thus provides a unique pos-
sibility to discriminate between different theories of the glass
transition.

The incoherent motion and the relation between diffusiv-
ity and mobility can also be studied within our approach, and
is topic of a companion paper [75]. Our finding of values
close to the universal )A((yt =;— points to intriguing connec-
tions to critical spin models. Open questions concern estab-
lishing such a connection and to address the concept of an
effective temperature, which was developed for aging and
driven mean field models. It might also be interesting in the
future to study the response of the system to small perturba-
tions in the shear rate y [76].

We derived a relation between the dominant part of the
violating term and the waiting-time derivative of Ct,1,,),
viz. a relation of two completely different physical quanti-
ties. This connection can be tested in simulations. Because
we identified all but one contributions of the violating term
with independently measurable quantities, all our approxima-
tions are testable independently in simulations. The differ-
ence of the measured Ay; in FDT simulations to the sum of
the measured terms of Ay; in waiting-time simulations yields
the contribution of the last term in Ayy.

We presented an exact formulation of the susceptibility
which involves the Hermitian part of the SO. This part is
interpreted to represent the dynamics in the frame comoving
with the probability current.

We introduced the shear step model to illustrate the FDT
violation in sheared colloidal suspension. In the shear step
model, the FDR takes values X = %
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APPENDIX A: MODE COUPLING APPROACH

In this appendix, we start over and present the analysis of
the susceptibility in Eq. (16) for density fluctuations using
Zwanzig Mori projections. f= quEieiq'ri for coherent and
f= Qf1=e‘q'rf for incoherent density fluctuations. We will treat
the two cases at once with @ denoting either o, or Qfl. f
being x independent translates into ¢,=0. Normalized equi-
librium, transient, and stationary correlators as defined in
Sec. 1II A, are denoted (t) (Q"eﬂe’@/(Q o),

y()=(0"¢¥10)/(0"0) and Cy(n)=(g"e"" >(”/<e ).
Statlonary averages are normahzed with {@*@)?, the initial
value of the stationary correlator. In the coherent case, this is
the distorted static structure factor SU”= <Q 04 YA/N, in the
incoherent case, it equals unity, Qf]*g =1. The transient co-
herent correlator is normalized by the equilibrium structure
factor Sq=(QZQq>/N. The normalized violating term is then
defined by [compare Eq. (13)]

1 00" o \P
Axy(0) = <Q*Q><v><2 o de g> +Cy(0).
(A1)
One gets the normalized analog to Eq. (16),
Axq(t) = @:—Q);mfo ds<0' e E (9;+F)) i QT’Q>.
(A2)

Since we are left with an equilibrium average, it is useful to
express Ax,(7) in terms of the transient correlator ® (1) as is
done in the following subsection.

1. Zwanzig-Mori formalism—FDT holds at =0

We use an identity obtained in the Zwanzig-Mori projec-
tion operator formalism [77] {see Eq. (11) in Ref. [78]} to
find the exact relation

Axy(n) = f di'Ny(t—1")Dy(t'), (A3)
0
Ny(1) = Wf
de<0' P ?2 (9, + F) Q QQ‘Q’QQ Q>
(A4)

with P=p>{p*p) ! <p* projecting on a subspace of den-
sity fluctuations and Q=1-P. Ny(t) can also be split into the
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three contributions according to Eq. (18), which will be done
at the very end only. Equation (A3) could be expected to
contain a second term, Ax,(1=0)® (1), the static coupling at
t=0. It vanishes in Eq. (A3), i.e., Ax,(0)=0; Ay, is real [39],
and second and third term in Eq. (18) cancel at 1=0. The
waiting-time derivative vanishes at =0 due to symmetry for
arbitrary f,

<nyf*f> =0

It has thus been shown that the equilibrium FDT is exactly
valid at r=0.

(AS)

2. Second projection step

MCT approximations for the function Ng() directly are
not useful because they cannot account for the fact that Nq(t)
is a fast function. This is achieved with a second projection
step following Cichocki and Hess [79], see also Refs.
[35,37,39]. The adjoint of the Smoluchowski operator is for-
mally decomposed as

Q= '+ Q') e Q') (e Q' . (A6)
The function Ny(7) is then connected to a new function n,()
governed by (). The following identity can be proven by
differentiation,

N(/T ;= ny(t) - ft dt' Ny(t")m(t—1'), (A7)
0

2
)= o, fo
de<0' 0 ‘2 (9;,+F,) - &_Q QQ’Q[QQ Q>

(A8)

1 . i .
my(t) = —F2<e*9' 02900 o). (A9)

(e"e)

r,=—(¢" O'p)/{p*p) is the initial decay rate. It equals qz/S
for the coherent and ¢ for the incoherent case. my is 1dent1-
fied as the memory function, which appears in the equation
of motion of the transient correlator. It is related to the tran-
sient correlator for ¢,=0 exactly by [38]

q')q(t) + Fq{ Dy (1) + fldt’mq(t— t’)(i)q(t’)} =
0
(A10)

We will later be interested in the Laplace transform,
mg(z)=[gdte"'mgy(1), which at z=0 is in the limit of slow
dynamics given with Eq. (A10) by [80],

my(z=0) = Dy(z=0).

The benefit of the second projection step can now be illumi-
nated by regarding Ny(z), which is given via Eq. (A7) by

(A11)
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Nyle) = —a&__ (A12)

T, + mq(z)'

To discuss this, we turn to scaling considerations. mg(t) de-
cays on time scale (77'+||)~! [37], where 7 is the @ relax-
ation time of the unsheared system. In the glass, it is for-
mally infinite and we have

O(7) liquid,

lim my(z=0) = (A13)

1
-0 O(—) glass.
|71

As will be shown below [Eq. (B17)] by MCT approxima-
tions, n4(z) has the following properties,

{(9(5272) liquid,

o) (A14)

lim ng(z=0) =

¥—0 glass.

The scaling mq(z=0) |7/~ in the glass provides Ny(z=0)
via Eq. (A12) with an additional power of ¥ compared to
nq(z=0),

O(y liquid,
lim Ny(z=0) = (72. ) liqui
70 o)

This is the benefit of the second projection. Note that Ny(z
=0) corresponds to a rate, which is always small but changes
at the glass transition. Because of its smallness, Ny(z=0) is
difficult to approximate quantitatively.

The time integrated violating term Ay, finally follows at
small shear rates with Eq. (A3),

O(¥#7) liquid,
oO()

(A15)
glass.

lim Ayy(z=0) =

¥—0

(A16)
glass.

Equation (A16) is in accordance with simulations and with
the physically expected property of x, to be always finite at
z=0. The response should not diverge.

In both the liquid and the glass, the violating term Ay, is
symmetric in 7, reflecting the fact that fluctuations in z and y
direction are independent of the direction of shearing. While
Ax, is analytic in y in the fluid, it is nonanalytic in the glass.

We can now compare the derived property in Eq. (A16) to
the approximation in Eq. (34), from which we find for glassy
states and y—0,

19 1
Ax(z=0) = ﬁ{ EJWCf(l,tw)LW:o}(Z =0) =~ - Eff,

(A17)

in accordance with Eq. (A16). f; is the nonergodicity param-
eter. In the fluid, Egs. (A16) and (34) also agree which can
only be shown numerically, see Fig. 7.

3. Markov approximation—long time FDR

Using a special projection step, we have shown in the
previous subsection that the function Ny(z=0) is of order ||
in the glass, i.e., we have reason to assume that Nq(t) decays
fast in time compared to ®(r) which diverges like |37 at
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z=0. With this assumption, Eq. (A3) can be written
in Markov approximation wusing the 6 function,
Ny(#) =N4(z=0)&(¢). For the susceptibility follows:

1%

Xq(t) == ECq(t) +Ng(z=0)P (7). (A13)
We will see in Appendix A 4 that Eq. (A18) gives very
similar results to Eq. (34). According to Eq. (A18), the equi-
librium FDT is violated if Nq(z=0) is nonzero. For short
times, y7<<1, we have [N,(z=0)|<|C4(#)| and the equilib-
rium FDT holds. N,y(z=0) is of order [, see Eq. (Al15),
Cq(t) is of order I';)=0O(1). For long times, yt~1, Cq(t) is
also of order ||, the two terms are comparable in size and
the equilibrium FDT is violated. The long time FDR is ad-
ditionally independent of time, if Cy(z) and ®(7) decay ex-
ponentially for long times with the same time scale. Approxi-
mating the two correlators to be equal and relaxing
exponentially in glassy states,

}imw Cy(t) = B (1) = f el (A19)
we find in the glass,
Jd
- —C,(t vt <1,
; P q() 04
Xol) = Ny(z=0)\ o
- (1 + —‘L))—Cq(t) 1= 0(1).
|Yaq /ot
(A20)

This equation is in qualitative agreement with Eq. (35). The
long time FDR
Ny(z=0
Xq([ s oo) = l + _‘]Q

, (A21)
[aq

is time independent and also independent of shear rate for
y—0. It is hence nonanalytic as pointed out before. As we
will see, Ny(z=0) is negative in MCT approximations and
the FDR is smaller than unity in agreement with Eq. (34).

4. FDT violation quantitative—connection of the two
approaches

We will now perform MCT approximations for the
memory function n4(). It contains two evolution operators,
one for the correlation time ¢ and one for the transient time s,
which entered through the ITT approach. We rewrite Eq.
(A8) via the identity (17) which leads to three contributions
for ny(t)

ng(0) =0 () + 1P (1) +n(1),

Wy —— L Y ) Qfsyt % T
ng () = . f ds(o,e *Q e U()O0'p),
VT et Sy T
Y saal
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0= Wﬂ) ds(o,, e Q" QU0 @),
q

(A22b)

ng (1) = — fds(oxyem(ﬂ"'e*)U(t)Q*Q%

U(1) = 02220 (A22¢)

The s integration in n'" could be done directly as in Eq. (19).
Also nff)(t) and nff)(t) can now be identified with derivatives
with respect to s. It is important to note that without identi-
fying these s derivatives, the correct ¥ dependence of Ax,()
would not be achieved.

The detailed MCT approximations for the terms above are
shown and evaluated in Appendix B. In the following sub-
section, we compare the appendix approach to the main-text
approach.

Connection of the two approaches

Let us compare the three terms of Ay; in Eq. (18) to Eq.
(A22). From the analysis in this appendix, we have the exact
relation for f=@, which is more handy in Laplace space,

Ayg(d) = —1E g ()

A23
UL, +my(z) 1 ¢ (423)

The waiting-time derivative in Eq. (18) is for density fluc-
tuations exactly given by

19 n(2)
C{ ngCq(th)szo}(Z) = mq)q&)-

(A24)

And the sum of the other two terms is exactly given by

Lo o 1@ +n@)
E{ 2[Cq(t) Dy ()] +Axq (I)}(Z) = mq)q(z)-

(A25)

With the Markov approximation in Eq. (A18), these are sim-
plified to [note that mg(z=0) e |y"'>1/T ]

1 (9 _ Vl(l)(z — 0)
ngCq(t, t)li =0 = ;;'q(ZTO)CDq(t), (A26a)
n?(z=0)+nP(z=0)
£ A e 20
(A26b)

with nfli)(z=0)/mq(z=0)06|j/| as y—0, see Eq. (A14). From
Eq. (25), which we consider very accurate, the waiting-time
derivative in glassy states is for long times equal to <I5q(t).
We conclude that Egs. (25) and (A26a) are in qualitative
agreement, if the transient correlator decays exponentially
for long times with time scale %|4{~!. This holds well [37]
and also has been used in the main text, see Eq. (29).
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FIG. 13. (Color online) Long time FDR as function of wavevec-
tor ¢ for density fluctuations in the z- and y-directions in the limit of
small shear rates. The packing fraction is the critical one (¢=0).

In Fig. 2, we show the quantitative comparison of the
functions at z=0, see Appendix B for details on the MCT
approximations for the terms [Eq. (A22)] and their numerical
evaluation. We see, that the MCT estimates compare quite
well to the prediction of Eq. (25). Figure 13 shows the long
time FDR as function of q as calculated by the MCT ap-
proximations for nq and Eq. (A21). We show only the con-
tribution of the first term, i.c., nq(z:O):nfll)(z=0). Also, in
Eq. (A21), the difference between stationary and transient
correlators is neglected since it follows with Eq. (A19). Ac-
cording to our analysis in the main text, Eq. (25), these two
simplifications would yield X =% for all g. We see that the
FDR evaluated from Eq. (A21) depends rather strongly on
wave vector, but given the complexity of the involved func-
tions, the result is still satisfying.

APPENDIX B: MCT-APPROXIMATIONS FOR r(#)

Here we show the detailed approximations for the for-
mally exact expressions for nq in Eq. (A22) by projection
onto densities. This physical approximation amounts to as-
suming that these are the only slow variables, sufficient to
describe the relaxation of the local structure in the glassy
regime.

1. Coherent case

For coherent density fluctuations, the time dependent pair
density projector is given by [39]

Ox(n€p(r) ) ¢ Qlt(,)Q*(,)
PZ(I) = 2 2 P .
k>p N=SySpary

(B1)

With advected wave vectors (e.g., k(r)=k—k-«t) and k(z)
=|k(7)| which enter through translational invariance [39]. The
memory function nfll) has only one time evolution operator
and can hence be approximated via ‘standard’ routes with the

projector P,(1) [39],
Y

M4y ~
na ()= o
2NSJT,

(0,0qQP(-DU(MP, Q0. (B2)

For the appearing time dependent four point correlation
function, the factorization approximation is used
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(Q;,(_,)Q:r(_ﬁ_qU(I) Qka—q)

=~ NSy Sk(c—g Puicny (D P (D Seier . (B3)
At the left hand side appears the expression
) (04,0400k0g1) ok Sk
Vol = s, s —q))—q—smc k7 Sk
(B4)

On the right hand side, we have the standard vertex [39]

v = <Qng—kQQTQg> -

(k- .tk .
NS5y q - (k- q)ncy_, + kney)

(B5)

In the derivation of Egs. (B4) and (B5), the convolution ap-
proximation for the static three point correlation function
was used [56],

<QqQk—qQk> =~ NSqSk—qSk'
3)

The treatment of n'? and ng is more involved. We first
separate the time evolution operator in ¢ with pair projectors
to get,

(B6)

(2) ~—7 - ofs =yt +
no(t) = - J ds{oe” 0, Q" 0P, U(t)Pr(1) 00" 0,),
q 2NSE,V)Fq 0 y q 2 2 q

(B7)
E Y ms ot
g (0= 2NSJT, f dslane™(Vey)
XQP,U(1)P5(1)Q070,). (B3)

After doing this, we are on the left hand side of the projec-
tors left with the two respective expressions,

(o Q 04070040 (B9)

and

(e (0701004 101)- (B10)

Writing Q as 1-P, we realize that the term containing P is
identical for both terms (they are real),

(e S(meq>eq> (B11)

<Qqu KOK)»
with opposite sign. These terms cancel each other. We are
left with the two expressions,

(00,0704 101, (B12)

and

(0,7 (10} 0-10)- (B13)

There is in principal more than one option to treat these
terms, but we will argue that only one option is applicable.
The standard way, i.e., the usage of P, right and left of the
time evolution operator is not preferable since it would not
preserve the derivative with respect to s. As already men-
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tioned, this derivative is necessary for the correct
y-dependence. That is why we chose to use the triple densi-
ties projector Ps,

5 Ck(nCp1€nn ) { Ch(nCp()Cni

(B14)
N3Sk0SoSuto)

P;(1) =

k>p>n
Equation (B12) is written as

o P3(= S)EQTSQZQTQq—ka>~
(B15)

To
(Te™ 0,070k =

We have to demand that the wave vectors in the triple pro-
jector take the values of the wave vectors on the right hand
side. Due to this constraint, the summation in Eq. (B14) con-
tains only one term and no counting factor appears. The left
hand side is the Vertex V“k) in Eq. (B4) for s-dependent wave
vectors [the projector Q does not make any difference in Eq.
(B4)]. The appearing six point s-dependent correlation func-
tion is approximated as

(04O Oh(r)q€” Qe 0k Okg)
3
NS Skics)-

Sk(=s)
a ]
~ ‘I’q(S)( [ P k(-s)- ﬁ} q)k(—x)(s)q)k(—S)—q(S)) .

This approximation rests on the observation that the operator
QOF acts as an s derivative. ®y_(s) and Py_;_4(s) depend
on s via the decay of the correlator and via the s-dependent
wave vectors. Since ()7 in Eq. (B16) represents the s deriva-
tive with respect to correlator dynamics, we have to subtract
the change in s due to the change of the wave vectors. The
term in Eq. (B13) is treated analogously with the triple den-
sity projector. Here, the approximation for the appearing six
point correlation function is more straight forward, since
®(s) has no wave vector advection,

(04CkicyOh(r-qe™ (00 010k
NS, Si(Cs)-gSkis)

5)—¢q
d
~ ( gq)q(s)) Dy () () Prg)—q(8).

Collecting the terms, we finally find the following expres-
sions, where 7.2 and r_z£l3) denote the functions without the
terms in Eq. (B11),

.S2
ngl)(t) _ _yq_f

2)
- 4nq25(7) 2 )3 qk( Z)Vflkq)k( t)(t)q)k( 1)— q(t)

(B16a)

_ d’k
0= 4nq25<J f (o Vs Ve

J J

XD () Py_g(1), (B16b)
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d’k d
g (1) = 4nqu<y)J f(z )3V51k< qk(r<g¢q(s)>

X Dy (—5)(5) Py () Pi()Pye_4(1),  (B16c)

!

S;
Vih =k, (k, qy)—qiSk+k k

Yk Sq—k’

qk =q - [(k - q)ncy_, + kney].

With ¢—k=|q—k| and k(#)=k—k- st as before. ¢, is the equi-
librium direct correlation function connected to the structure
factor via the Ornstein-Zernicke equation S,=1/(1-nc;)
[52]. From the expressions in Eq. (B16) one can now see the
earlier proposed properties, Eq. (A14). The function n, can
schematically be written

q

ng(t) = ay’tf(r) + bfw dsj/zs%g(s)h(t). (B17)
0

The first term in Eq (B17) corresponds to nfll) the second
term to n(2 and n(3 (1), g(2), h(r) are functions of ¢/ 7 in the
liquid and [t in the glass. Equation (A14) follows. The fact
that the terms in Eq. (B17) start linearly with ¢ and s respec-
tively comes because V!? in Eq. (B16) is symmetric in k,,
V2 =v(k2), and because VIV at time =0 (or s=0) is antl—
symmetnc in k, VW(-k)=-V"(k), and the property

l)(z‘—> 0) ~ 7t follows after integration over d°k. The linear
increase with time follows for example from k(1) =k,— yrk,.

For the numerical evaluation of Eq. (B16), the tranA51ent
correlator ®(#) and the static structure factors S, and Sflw are
needed. As a purely technical simplification, we use the iso-
tropic approximation [37], which reads for long times in
glassy states

Dy (1) = D (1) = f et (B18)

with the nonergodicity parameter f, and the amplitude A,
The parameter ¢ can be derived from a microscopic analysis,
we use ¢=3 [37]. For the static equilibrium structure factor,
we use the Percus-Yevick closure [52], and approximate
S, S(” which holds well at small shear rates [10], although
the structure is nonanalytic [81]. In the limit of small shear
rates, the contribution of the short time decay of the correla-
tors to the above expressions vanishes. The above expres-
sions are evaluated using spherical coordinates with grid
kpax=30, Ak=0.05, and AO=A¢p=/40 or smaller. The time
grid in both ¢ and s was Jr=274/10'0, starting from i=90
corresponding to y#~6 107*. The results are included in
Figs. 2 and 13.

2. Incoherent case

From now on we denote incoherent functions with super-
script s. The terms in Eq. (A22) for the incoherent case, f
—Qq are approximated similarly to the coherent analogs, us-
ing the pair density projector [82]
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o0k ) { Cp(n ki

(B19)
NSy

Py =2
p.k
The approximation for n® (1) is then straight forward fol-

lowing Egs. (B2)—(B4). Regarding the vertex, there occur
simplifications,

S/
Vg]skl) = <0-nyq QSQqu k> k ky k . (Bzo)
The right hand side of the vertex reads
‘ s_ ~ sQ? s
2 _ (Qcg@k0"2e0y) =k - qney. (B21)

N =
q Sk

For the memory functions nf;’z)(t) and () we first use the
projector P35 according to Egs. (B7) and (B8). We note that
the two terms corresponding to Eq. (B11) vanish in this case
independently. We arrive at the expressions equivalent to
Egs. (B12) and (B13), reading (o, exp[QTs]Q “QOf 0q-kOK)
and (o, exp[QTs](QTQq )Qq- KO- We use the trlple density
projector as before,

Pin= X

k>p,n

Ck(n€p&n(n ) { Ch(nCp(nCnir)
NSn(t)

. (B22)

according to Eq. (B15). The discussions around Egs. (B16)
and (B16) and the approximations for the six-point functions
hold similarly. We arrive at

&Lk ,
ni V() = B )M,k Va2 Dy (0P g0,
(B23a)
”Els’z)(l) J dsf (; ]zsvflsk? V(SZ)

J Jd
X ( [ P K'(=s) - E} q’k(—s)(s)q’ls«(—w—q(s))

XD (N Dy_g(1), (B23b)
d*k a
(S 3)(f) n q f dsf (2 )3 Vilskl() S2))<£(I)fl(s)>
XDy () () Py g)—q () Pi()Py_g(1),  (B23c)

!

Sy
- <0-nyq QSQqu k> k ky k

(01q0-x0°Q0 0}
Sk

V(s 2)

=k - qne,

With ¢ —<Q‘*Qq)/(nS ) [52]. We evaluate these expressions
numerlcally, using the approximation (B18) for the coherent
correlator and a similar approximation for the incoherent
one, motivated by the solution for the correlator near the
critical plateau [51,82]. We write for long times in glassy
states
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Iy
(1) ~ D) =1, exp(— ;;fcw), (B24)

q
and again c¢=3. We consider the case where the tagged par-
ticle has the same size as the bath particles, for which
cfZ:(Sq—l)/(nSq) holds. We use the grid k,,,,=25, Ak=0.2,
AO=m/40, and A¢p=1/20 (z direction) and Af=7/20 and
A¢=m/64 (y direction) or smaller, the time is discretized as
in the coherent case.

The results are included in Figs. 2 and 13 and again allow
to conclude qualitative agreement with the approach of the
main text, with quantitative differences arising from the in-
volved MCT approximations.

APPENDIX C: SIMULATION DETAILS

The shear step model was simulated as follows: the
one dimensional random walk within the well was

PHYSICAL REVIEW E 81, 011408 (2010)

discretized. At each time step (with Ar the length of the time
step), the particle position propagates by the step length s,
x(t+At)=x(r)+s. s was determined by

12
s=2,r-6, (C1)
i=1

with r; random numbers (0,1). This gives a Gaussian distri-
bution of width o=1. We used a=4 for the width of the well.
If x(t+Ar) lies outside the well, the step is rejected, i.e., the
particle stays at its position. For the case with external force
F, the distribution in Eq. (C1) was shifted by 5/100, corre-
sponding to F= %TT with 6?=2DyAt. With =1 and a=4, the
deviation of the linear response result is of the order of 1
percent.
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